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ABSTRACT
Engineering bacterial metabolism to efficiently produce chemicals and materials from multi-step
pathways requires optimizing multi-gene expression programs to achieve enzyme balance.
CRISPR-Cas transcriptional control systems are emerging as important metabolic engineering
tools for programming multi-gene expression regulation. However, poor predictability of guide
RNA folding can disrupt enzyme balance through unreliable expression control. We devised a
set of computational parameters that can describe guide RNA folding, and we expect them to be
broadly applicable across CRISPR-Cas9 systems. Here, we correlate efficacy of modified guide
RNAs (scRNAs) for CRISPR activation (CRISPRa) in E. coli with a kinetic parameter describing
folding rate into the active structure. This parameter also enables forward design of new
scRNAs, with no observed failures in our screen. We use CRISPRa target sequences from this
set to design a system of three synthetic promoters that can orthogonally activate and tune
expression of chosen outputs over a >35-fold dynamic range. Independent activation tuning
allows experimental exploration of a three-dimensional expression design space via a
64-member combinatorial triple-scRNA library. We apply these CRISPRa programs to two
biosynthetic pathways, demonstrating production of valuable pteridine and human milk
oligosaccharide products in E. coli. Profiling these design spaces indicated expression
combinations producing up to 2.3-fold higher titer than that produced by maximal expression.
Mapping production can also identify bottlenecks as targets for pathway redesign, improving
titer of the oligosaccharide lacto-N-tetraose by 6-fold. Aided by computational scRNA efficacy
prediction, the combinatorial CRISPRa strategy enables effective optimization of multi-step
metabolic pathways. More broadly, the guide RNA design rules uncovered here may enable the
routine design of effective multi-guide programs for a wide range of model- and data-driven
applications of CRISPR gene regulation in bacterial hosts.
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INTRODUCTION
Synthetic biology and metabolic engineering have great potential for enabling chemical
bioproduction from sustainable feedstocks as part of a circular bioeconomy1–3. Efficient microbial
conversion of simple substrates into valuable chemicals and materials often requires precise
expression control across multiple genes to optimize enzyme levels and stoichiometry. Despite
recent advances in gene expression technologies, it remains challenging to engineer and
optimize multi-step metabolic pathways4–6. CRISPR-Cas transcriptional control systems have
emerged as promising routes for programming the precise expression of multiple genes, which
could accelerate the development of engineered organisms for a wide variety of applications7–10.
We recently developed an approach for the construction of multi-gene CRISPR transcriptional
control programs in bacteria, with activation (CRISPRa) or repression (CRISPRi) functions
specified through the regulated expression of multiple guide RNAs (gRNAs)11,12. Recent
demonstrations of dynamic multi-layer CRISPRa/i gene regulatory network designs in E. coli13,14

and CRISPR-based metabolic pathway engineering in the soil microbe Pseudomonas putida15–17

highlight the versatility of these systems for programmable multi-gene control. However, gaps in
knowledge and technique continue to prevent the routine design of CRISPRa/i programs
capable of quantitatively tuning activated expression from multiple bacterial genes at the same
time9,18.

Quantitatively tunable multi-gene expression programs are particularly useful for
microbial metabolic engineering applications19. It is important to identify gene expression
programs that minimize enzyme imbalances in multi-gene heterologous pathways and tune
endogenous networks to redirect metabolic flux towards the desired output4,6,20. Balanced
enzyme expression helps minimize bottlenecks, prevent excess metabolic burden, and avoid
accumulation of toxic intermediates. Identifying these programs is challenging, in part because
we lack tools to systematically explore large, multi-dimensional spaces of gene expression
programs. Addressing this challenge with CRISPRa/i systems requires reliable and tunable
regulation of gene expression, in turn requiring predictive gRNA design tools for bacterial hosts.
Significant progress has been made in gRNA design using folding energetics predictions,
cell-based screens, and machine learning, although these methods have been applied primarily
for gene editing applications in mammalian cells21. General design strategies for tunable
CRISPRi with modified gRNAs have been reported for both mammalian and bacterial
systems19,22. However, many bacterial CRISPRa systems use gRNAs with additional structured
elements11,12,23, and it is unknown whether design rules for effective gRNA function are
generalizable across applications and organisms.

Here, we identified structural properties that enable routine guide RNA design for
tunable multi-gene bacterial CRISPRa programs. Our CRISPRa system uses modified single
guide RNAs (sgRNAs) that are extended with hairpin sequences, termed scaffold RNAs
(scRNAs), to recruit the transcriptional activator SoxS upstream of a promoter11,12. This
recruitment results in activation of a weak minimal promoter to high expression levels. To
identify design variables affecting CRISPRa, we investigated a set of thermodynamic and kinetic
guide RNA folding parameters. We found that the largest impact emerged from the size of the
energy barrier separating the most stable scRNA structure from the active scRNA structure: this
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single kinetic parameter accurately predicts about 80% of the variation in CRISPR-activated
expression. By comparison, we discovered that commonly-used computational tools for gRNA
design cannot consistently identify scRNAs for effective bacterial CRISPRa. We expect that our
computational approach could be generalized to identify effective gRNAs for a broad range of
CRISPR applications, because the parameters are intrinsic to the RNA sequence.

Starting from highly effective and orthogonal scRNAs, we generated predictable
variations in gene activation by truncating scRNA spacer sequences. Using these design
strategies, we engineered multi-guide programs that simultaneously direct tunable variations in
CRISPRa from multiple promoters independently. We applied a combinatorial set of these
CRISPRa programs to drive the design of engineered metabolic pathways producing valuable
biopterins and oligosaccharide molecules in E. coli. Screening productive variants from these
multi-gene programs is a simple method of engineering efficient microbial bioproduction. This
approach to biosynthetic profiling enables quantitative tuning of various pathways, and therefore
is a versatile approach for a broad range of bioproduction applications. Furthermore, the
capacity to reliably implement tunable, multiplexed gene expression will improve the ability to
precisely implement perturbations computationally predicted24,25 to optimize production strains.

RESULTS

scRNA target site sequences have variable effects on gene activation
To build multi-gene CRISPRa programs for metabolic engineering, we need promoters that can
be selectively targeted for activation through the expression of a matched, or cognate, scRNA
(Figure 1). The rules for effective CRISPRa from bacterial promoters are known to be complex12.
In particular, the 20 bp scRNA target site must be precisely positioned relative to the
transcription start site for effective gene activation. We previously identified a highly-effective
promoter (J3) with an appropriately-positioned target site12. By altering only the target site
sequence of the J3 promoter, we expected to generate orthogonal promoters that retain high
levels of gene expression.

We modified the J3 target site sequence to generate 14 additional synthetic promoters
with fully randomized target sites, each paired with its cognate scRNA (Figure 2a). Targeting the
CRISPRa complex in this way to each of the 15 promoters activated expression of a
downstream fluorescent reporter gene (Figure 2b). All of the promoter variants showed
measurable activation compared to the off-target scRNA control, but there was significant
variability over a 3-fold range in expression levels (Figure 2b). Consistent with previous
findings12, these results suggest that the target site sequence identity can have unexpectedly
large effects on gene activation.

The kinetic folding barrier predicts scRNA activity for CRISPRa
Variable activation from the orthogonal synthetic promoters could occur if the corresponding 20
base scRNA spacer sequences have different effects on folding. Changes to the spacer
sequence could lead to scRNA misfolding that disrupts binding to dCas9, recruitment of the
SoxS activator, or binding to DNA. We reasoned that the kinetic and thermodynamic properties
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associated with the conversion of a misfolded scRNA into the correctly-folded structure could be
important determinants of CRISPRa activity. Scaffold RNAs could be more effective in a kinetic
sense if they readily transition to the correctly-folded state, or could be more effective in a
thermodynamic sense if they are more likely to occupy the correctly-folded state.

To test these possibilities, we developed two coarse-grained parameters that describe
the energetics of scRNA folding: Folding Barrier to capture kinetic properties and Folding
Energy to capture thermodynamic properties (Figure 2c, Supplementary Figure 2a). We defined
the Folding Energy as the free energy difference between the most stable scRNA structure
(Minimum Free Energy, or MFE) and the correctly-folded, CRISPR-active structure. The Folding
Energy is large when the correctly-folded structure is less stable than the MFE, and approaches
zero as the correctly-folded structure increases in stability. The Folding Barrier is the height of
the activation energy barrier separating the MFE structure from the correctly-folded structure.
When the MFE structure can easily overcome this barrier and rearrange into the correctly-folded
structure, the Folding Barrier is low. The correctly-folded structure was defined as the
conformation in which the spacer is unstructured and the Cas9-binding handle adopts the fold
observed in the crystal structure of the Cas9-sgRNA-DNA complex26. Energetic parameters
were calculated using custom algorithms that apply programs in the ViennaRNA folding
package27 (see Methods).

To probe the relationships between our calculated parameters and CRISPRa function,
we experimentally tested a set of 39 scRNA-promoter pairs. This set includes the original J3
sequence, the 14 randomly selected targets described above, and 24 additional scRNAs
designed to have Folding Barriers ranging from 5 to 35 kcal/mol (Supplementary Methods). High
levels of CRISPR-activated expression correlated with smaller Folding Energies (rs = 0.7) and
lower Folding Barriers (rs = 0.8) (Figure 2d, Supplementary Figure 3a). Consistently, the MFE
structures of the highest-activation scRNAs in our set closely resembled the active scRNA
conformations, whereas the least effective scRNAs misfolded extensively (Supplementary
Figure 6). Interestingly, we found that Folding Barrier alone may be sufficient for identifying
highly effective scRNAs. The most effective scRNA in our 39-member set had the smallest
Folding Barrier. In contrast, three of the worst-performing scRNAs, which generated 95% less
gene activation than the J306 scRNA, had the largest Folding Barriers in the set. We also
considered other thermodynamic and kinetic parameters for use in predicting scRNA folding, but
found that Folding Barrier was the most effective predictor of CRISPRa function, with Folding
Energy and Net Binding Energy providing limited additional predictive power for low-FB
scRNAs. (Supplementary Figures 2 & 3, Supplementary Methods).

Our data suggest that Folding Barrier analysis could be used to drive the design of
scRNAs with a lower chance of weak activity. Out of the 24 rationally-designed scRNAs, the 15
scRNAs with the lowest Folding Barrier all yielded effective CRISPRa (at least 50% of J306
output, or about 18-fold activation), and their CRISPR-activated expression levels showed less
variability than those of the 15 randomly-designed scRNAs (Coefficient of variation = 12% vs.
31% for the random set) (Supplementary Figure 4). We observed in our promoter set that
high-performing scRNAs tended to have Folding Barriers ≤10 kcal/mol, and all defective
scRNAs (<50% of J306 activation) were >10 kcal/mol. Therefore, a Folding Barrier threshold of
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<10 kcal/mol could provide a useful computational screening metric for rapid development of
novel scRNAs.

To further evaluate this new kinetic parameter as a screening tool to design highly
effective scRNAs, we compared Folding Barrier with pre-existing models currently in wide use
for gRNA design. A common approach to analyze gRNAs involves calculating the free energy of
binding a correctly-folded gRNA to its target DNA28,29 (termed Binding Energy in Supplementary
Figure 2a). In this approach, gRNAs with more negative Binding Energies have unstructured
spacer sequences that should favor the DNA-bound state, and should therefore be more active.
In our study, however, the scRNAs with the lowest Binding Energy included a significant fraction
of defective scRNAs (33%), suggesting that Binding Energy is not sufficient to account for
CRISPRa functionality (Supplementary Figure 3, Supplementary Figure 4a). In contrast, the
Folding Barrier metric correctly predicts these failures within the low-Binding-Energy set:
defective scRNAs had relatively high Folding Barriers averaging 17.6 kcal/mol. Effective (≥50%
of J306) scRNAs in this set had an average Folding Barrier of 9.3 kcal/mol, further supporting
the use of a Folding Barrier threshold to screen functional scRNAs.

Several machine learning models have also been developed to predict gRNA
activity21,30–35. These models were trained with supervised learning to extract gRNA design rules
from large gene editing datasets and are widely used to aid the selection of gRNA target sites.
Among the models we tested, none yielded predictions strongly correlated with observed
CRISPR-activated expression from the scRNAs in our set. For example, the widely used
Azimuth, Doench ‘1621, and Moreno-Mateos30 tools had correlation coefficients (rs) of 0.22, 0.02,
and 0.09, respectively, and incorrectly selected several defective guides as the best
(Supplementary Figures 3 and 4). The top 15 scRNAs predicted by these tools contained both
defective scRNAs (with consistently higher Folding Barriers, e.g. 21.6 kcal/mol average using
Azimuth) and effective ones (7.3 kcal/mol average using Azimuth). Differences between
gRNA-directed editing and scRNA-directed activation may account for the poor performance of
these models in this application. A machine learning model trained on scRNAs used in bacteria
could potentially be effective, but generating large enough bacterial CRISPRa datasets for such
a model to account for the stringent target site requirements12 might be impractical. Given the
predictive success and ease of calculation of the Folding Barrier, we proceeded with this kinetic
parameter as a strategy to rapidly design highly effective scRNAs for bacterial CRISPRa.

Tunable CRISPRa expression from orthogonal synthetic promoters
By forward engineering scRNAs through computational folding design, our tools provide an
avenue for developing synthetic promoters driving high levels of CRISPR-activated expression.
To be useful for programming combinatorial variations in multi-gene expression, as in a
metabolic engineering application, two additional capabilities are needed. First, the synthetic
promoters must exhibit orthogonality with no cross-activation from other non-cognate scRNAs
expressed in the cell. Second, a strategy is needed to tune expression levels from each of the
promoters by independently modulating CRISPRa activity at each site. In this section, we show
that promoter orthogonality is readily obtainable and that 5’ spacer sequence truncations enable
quantitative and independent tuning of CRISPRa levels.
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To construct three sequence-orthogonal synthetic promoters, we selected three
high-performing scRNAs from the set identified through folding design. Because most randomly
selected 20 base sequences will be orthogonal, we did not apply any explicit filters for
orthogonality to select these sequences. The sequences included two new scRNAs, termed
J506 and J606, and the previously-described J306 scRNA with its cognate J3 promoter. All
three scRNAs have low Folding Barriers (≤10 kcal/mol), consistent with the threshold criterion
for effective scRNA selection. To construct cognate synthetic promoters for J506 and J606,
termed J5 and J6, we inserted each target site at the optimal position 81 bases upstream of the
transcription start site (Figure 3a). To minimize repeating sequence elements between the
promoters, we inserted distinct sequences in the intervening 26 bases between the target site
and the minimal promoter, using sequences previously screened to permit high CRISPRa
activity in this context12. We also randomized about 120 bases upstream of the target site PAM
in J5 and J6, without introducing additional dCas9 PAMs. From the new J5 and J6 promoters,
we observe high levels of CRISPR-activated expression, similar to the expression level from the
J3 promoter (Figure 3b). To confirm orthogonality of J3/J5/J6, we measured the response of
each promoter paired with either non-cognate scRNA and observed no activation (Figure 3B).

To generate independently tunable expression from our orthogonal CRISPRa promoters,
we considered multiple strategies. Several approaches have been described, generally either by
modulating gRNA expression level or by direct modification of gRNA sequence. For example,
CRISPRi or CRISPRa activity can be tuned using different strengths of constitutive promoters to
drive gRNA expression23,36. Alternatively, introducing mismatches in the gRNA spacer sequence
can modulate CRISPRi gene repression37–40, and truncating the gRNA target sequence from the
5’ end has also been shown to reduce CRISPRi activity37. Here, we reasoned that
truncation-based tuning would yield a more predictable response than spacer mismatches, and
would allow us to keep the same constitutive promoter strength expressing each scRNA. This
approach simplifies cloning and decreases the risk of dCas9 binding competition effects41,42.

We screened J3-, J5-, and J6-targeted scRNAs truncated 1–9 bases from the 5’ end to
identify guides that encode discrete intermediate levels of CRISPR-activated gene expression.
Across all three promoters, scRNA spacer truncation gradually reduced CRISPR-activated
expression (Figure 3c), and from those functions we selected high, medium, and low activation
levels. The folding parameters predict similarly high efficacy for all truncations (Folding Barrier
≤10 kcal/mol), while the Net Binding Energy generally becomes less favorable with truncation
(Supplementary Table 6). This effect is consistent with the smaller number of RNA bases
available to pair with the DNA target, and loosely correlates with output activation
(Supplementary Figure 7). Specifically, the full-length J306 scRNA with a 20 base spacer
generated 38-fold activation, and truncated scRNAs with 17, 14, or 11 base spacers tuned
CRISPRa to 27-fold, 15-fold, and 7-fold activation, respectively. For the J506 and J606 scRNA
truncations, the expected monotonically decreasing trends were observed, although the precise
truncations to achieve similar activation levels were not the same (Figure 3c). In particular, the
J606 scRNA was more sensitive to truncation than J306 and J506. For instance, the 14-base
J606 truncation activated gene expression by only 2-fold, while the 14-base J306 and J506
scRNAs activated their promoters by 15-fold and 11-fold respectively. Consistent with previous
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work investigating DNA-level sequence context effects on CRISPRa43, sequences adjacent to
the spacer targets in the J3/J5/J6 promoters might affect truncation response. Even if the
energetic parameters here do not quantitatively explain the sensitivity of each promoter’s
truncation response (Supplementary Figure 7), they generally reflect the rank order of the tuned
outputs (Rs = 0.83 for J306, Rs = 1 for J506, Rs = 0.94 for J606).

Interestingly, the J306 scRNA with a 19 base spacer generated higher activation than
the 20 base spacer (46-fold vs. 38-fold) even though the Net Binding Energy for the 20 base
spacer (-32.3) was similar to that of the 19 base spacer (-31.4). Taken together, the energetic
parameters do not indicate impaired folding of the 20 base spacer or any other indication that
the 19 base spacer should perform better for CRISPRa. It is possible that spacer truncations
could affect transcription of the scRNA itself or could introduce scRNA folding characteristics not
captured by our screening parameters. For practical applications, however, we can empirically
choose the appropriate scRNA spacer length from within the truncation datasets to obtain
tunable high, medium, or low activation from each of the three promoters.

Combinatorial CRISPRa library enables tuning of multi-gene expression programs
Encoding expression levels directly in multi-scRNA programs creates a straightforward way to
implement combinatorial variations in the expression of multi-gene systems. Genes of interest
can be cloned under the control of a set of synthetic CRISPRa promoters and tuned by simply
changing the identity of the scRNAs transcribed in the cell. For example, driving the expression
of three genes with the J3, J5, and J6 promoters and expressing a combination of a J306
scRNA with an 11 base spacer, J506 with a 20 base spacer and J606 with an 18 base spacer
would result in low, high, and medium expression of the corresponding genes. By extending
such a strategy to encompass all possible combinations of truncated J306, J506 and J606
scRNAs, we can rapidly explore large combinatorial spaces of gene expression under the
control of CRISPRa promoters (Figure 4a).

We demonstrate the immediate utility of this design strategy by creating a set of genetic
tools for combinatorial gene expression profiling. We constructed a library of multi-scRNA
“program” plasmids that encode the expression levels from the set of synthetic CRISPRa
promoters, which control a set of desired genes on an “output” plasmid. Three-gene
combinatorial expression profiling is then enabled by simply combining an output plasmid with
each member of the program library (Figure 1), allowing the same scRNA library to be used for
arbitrary outputs. We constructed a full library of scRNA plasmid variants to encode all possible
combinations of high, medium, low (Figure 3c) and basal expression of three target genes.
Basal expression from each of the targeted promoters was minimal and resulted from an
off-target scRNA. Together, the library is composed of 64 plasmids (43) that can be combined
with any construct containing genes driven by the J3, J5, and J6 synthetic promoters, resulting
in strains encoding 64 different combinations of multi-gene expression.

As an initial validation of our strategy, we tested the combinatorial multi-scRNA library
using fluorescent reporter expression. We delivered each of the 64 constructs from the library to
an E. coli strain containing GFP, BFP, and RFP reporters under the control of the J3, J5, and J6
promoters, respectively. The resulting strains displayed every combination of high, medium, low,
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and basal expression for the three reporters. Across this set, the strains displayed variations in
relative expression levels consistent with the multi-scRNA programs they contained (Figure 4b).
However, we also observed that tuning one gene could affect expression of the other genes.
First, we found that total expression was reduced by 30-40% when high activation was
simultaneously encoded for all three reporters, suggesting that high heterologous gene
expression is limited by host expression capacity. Although these effects will vary with different
target genes and ribosome binding site strengths, they indicate that maximal expression of
multiple genes in a pathway can have unintended consequences that may result in suboptimal
behavior. Second, we observed that high expression specifically of RFP had a deleterious effect
on GFP and BFP levels (Supplementary Figure 8). It is well-established that expression burden,
metabolic burden, or toxicity can have effects on gene expression levels that are difficult to
predict44,45. Our findings underscore the importance of systematically exploring the combinatorial
design spaces of multi-gene expression programs to optimize engineered systems. Using this
strategy, we applied our CRISPRa tools to build combinatorial expression programs to optimize
flux through two engineered metabolic pathways.

Biosynthetic profiling of an engineered tetrahydrobiopterin pathway with combinatorial
CRISPRa programs
To determine if combinatorial optimization would be effective for metabolic engineering, we
applied our CRISPRa promoters and library approach to regulate tetrahydrobiopterin (BH4)
biosynthesis. BH4 is a central cofactor in aromatic amino acid metabolism and a treatment for
life-threatening metabolic disorders, including a form of phenylketonuria46. It can be produced
from a three-enzyme pathway47–49 using the E. coli gtpch and M. alpina ptps and sr genes, as
described previously15. Production can be monitored with a fluorimetric assay47–49, providing a
convenient model system for combinatorial screening. We placed codon-optimized gtpch, ptps,
and sr genes in a BH4 pathway plasmid with enzyme expression controlled by the J3, J5, and
J6 synthetic promoters, respectively (Figure 5a and b). Co-transforming the BH4 pathway
plasmid into E. coli with each member of our combinatorial multi-scRNA library resulted in 64
new strains, each encoding a different combination of high, medium, low, and basal expression
of the BH4 pathway enzymes. We monitored biosynthetic flux through this pathway by
measuring the absorbance at 340 nm, which reports on the spontaneous BH4 oxidation
products dihydrobiopterin (BH2) and biopterin15.

We observed the highest BH4 production in strains with high expression of the first
enzyme in the pathway, GTPCH, indicating that gtpch expression is a sensitive control point in
this system (Figure 5c). Reducing J3-gtpch activation from high to low decreased production by
an average of 54%. Changes in expression of the second enzyme, PTPS, had relatively little
impact on production across the whole set of combinatorial programs (J5-ptps high to low
reduced production by an average of 20%), except for conditions in which its expression was
basal (high to basal reduced production by an average of 46%). Interestingly, basal expression
of the SR enzyme was not only sufficient for BH4 production, but increasing its expression led to
reduction in product titers. For example, increasing J6-sr activation from off-target to high
reduced production by an average of 36%. This reduction was widespread and consistent, with
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13 out of 16 J6-high strains producing significantly less BH4 than their off-target counterparts.
Previous kinetic characterization of SR renders this result unsurprising50, because even basal
SR expression provides a vast excess of activity relative to the flux delivered by the upstream
pathway. Additional SR beyond the basal level presumably only contributes additional
expression burden without increasing overall pathway flux. Taken together, these results identify
effective enzyme levels for BH4 biosynthesis and highlight that maximal expression of all
enzymes is not optimal.

Applying biosynthetic profiling for efficient production of a human milk oligosaccharide
We next applied our CRISPRa system to perform combinatorial expression analysis of a
multi-gene pathway for producing the valuable oligosaccharide lacto-N-tetraose (LNT)51,52.
Human milk oligosaccharides (HMOs) are major components of human milk53 with substantial
effects on infant immune development54, microbiome establishment55,56, anti-inflammation57,58,
and more59. Microbial production may provide routes to obtain scalable quantities of HMOs for
research, nutrition, and therapeutic applications that are otherwise difficult to obtain using
traditional chemical synthesis60,61. LNT is a highly abundant HMO, a valuable formula additive,
and a core structure of several other structurally-diverse HMOs60,62.

A three gene pathway consisting of the LacY lactose permease and two heterologous
enzymes, LgtA63 and WbgO64, can produce LNT in E. coli51,52 (Figure 6a). Starting from a lactose
feedstock supplied in the media, E. coli LacY imports the lactose into the cell, where LgtA, a
β-1,3-N-acetylglucosaminyltransferase from Neisseria meningitidis, produces the intermediate
metabolite lacto-N-triose II (LNT II) using the hexose sugar from endogenous
UDP-N-acetylglucosamine. WbgO, a β-1,3-galactosyltransferase from E. coli O55:H7, then
produces LNT using LNT II and endogenous UDP-galactose. Knocking out endogenous
β-galactosidase activity (lacZ) is also necessary to prevent cleavage of the lactose feedstock
into its constituent monosaccharides glucose and galactose, which would divert flux away from
LNT biosynthesis and toward glycolysis51,60,65–68.

To establish CRISPRa control of LNT production, we generated a new output plasmid in
which expression of the codon-optimized lacY, lgtA and wbgO genes are independently
controlled by the J3, J5, and J6 synthetic promoters, respectively (Figure 6a). We delivered this
LNT pathway plasmid, together with our existing multi-scRNA library, to the lacZ knockout E. coli
strain JM109. Using HPLC to quantify accumulation in the culture supernatant of LNT and
intermediate metabolite LNT II, we found a wide range of extracellular titers across the library,
from zero to nearly 600 μM LNT (Figure 6b). A majority of the strains produced low or no LNT in
supernatant, including some of the highest-expressing variants. For example, the strain with
maximal expression (high-lacY, high-lgtA, high-wbgO) produced only 252 μM LNT (178 mg/L),
while a strain with reduced lacY activation (medium-lacY, high-lgtA, high-wbgO) produced 576
μM LNT (408 mg/L). In general, we found that LNT production was compromised in the strains
where lacY expression was highest, with only two out of 16 high-lacY strains producing >50 μM
LNT (Figure 6b, left). This finding is consistent with toxic proton transport resulting from LacY
activity69,70, and exemplifies an underlying mechanism of non-monotonic genotype-phenotype
relationship. When lacY is reduced to medium levels, there is a large spread in LNT production,
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with eight out of 16 strains producing >50 μM LNT (Figure 6b). The J3-lacY local maximum
highlights the importance of exploring a wide combinatorial space of enzyme expression, and
the high variation of medium-lacY LNT production indicates the need for additional optimization
of the other enzymes.

To understand the relative importance of LgtA and WbgO, we focused on the subset of
medium lacY strains. In the medium-lacY sublibrary (Figure 6c), LNT production appeared to be
more sensitive to variation of J6-wbgO expression than to variation of J5-lgtA expression. High
LNT production (>400 uM) required high wbgO expression, indicating a steep
expression-production relationship. For lgtA, high production was possible at high or medium
expression, indicating a more gradual expression-production relationship. Reducing wbgO
expression from high to low decreased titer from 576 μM to 56 μM (90.3% reduction compared
to the maximum), but reducing lgtA expression from high to low only decreased titer to 182 μM
(68.4% reduction) (Figure 6c). In most of these expression combinations, we also observed
significant extracellular accumulation of the LNT II intermediate, the substrate for WbgO to
convert into LNT. This accumulation was only avoided when lgtA was not activated (basal
expression). When LNT II did accumulate, its titer did not depend strongly on low, medium, or
high lgtA activation (Figure 6c). High LNT II titers were much more widespread across the library
than high LNT titers (35 strains with LNT II titer above 25% maximal, compared to 10 strains for
LNT) (Supplementary Figure 11). Taken together, these results suggest that limited
β-1,3-galactosyltransferase activity of WbgO is a metabolic bottleneck in this pathway,
confirming previous observations52. Our use of a combinatorial library to profile a multi-enzyme
design space allowed us to easily characterize bottlenecks by probing for sensitive control
points in the pathway.

A machine-learning analysis further validated the wbgO bottleneck. We used scRNA
truncation levels from the library strains as inputs to the Automated Recommendation Tool
(ART)71 to predict LNT production as a response variable, achieving high prediction accuracy
(R2 = 0.7, Supplementary Figure 13) after training with the experimental LNT production data
from the library. ART then used the predictions and uncertainties to make recommendations of
the most productive enzyme expression levels. The most highly-recommended strains
consistently prioritized maximal wbgO expression to achieve high LNT production. ART did not
provide similarly stringent recommendations for lacY and lgtA (Figure 6d and Supplementary
Figure 14), allowing substantial expression variation among LNT-productive strain
recommendations. In agreement with the experimental library screen, these recommendations
identify the wbgO bottleneck as a high priority for optimization, despite ART being unaware of
LNT II accumulation. Furthermore, when allowed to recommend any spacer length up to 21
nucleotides, whether tested experimentally or not, ART frequently recommended wbgO levels
above the highest experimentally-tested level. Collectively, these data underscore the idea that
WbgO (β-1,3-galactosyltransferase) activity should be increased beyond maximal CRISPR
activation of wbgO in this context.

To increase β-1,3-galactosyltransferase activity, we replaced WbgO with the GalT
enzyme from Chromobacterium violaceum (CvGalT), an enzyme with faster turnover.72 We
placed CvGalT under J6 control in the LNT pathway plasmid and paired it with the previously
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highest-producing scRNA library strain (medium-lacY, high-lgtA, high-CvGalT). Compared to the
corresponding WbgO strain, the CvGalT strain produced a 5- to 10-fold increase in supernatant
LNT titer, while LNT II accumulation decreased 5- to 20-fold, with the precise effect depending
on the feedstock concentration (Figure 6e). These paired effects reflect the higher ability of
CvGalT to bind and convert LNT II before it is exported to accumulate in the supernatant73. The
highest supernatant titer achieved by this system increased to 2.52 mM LNT (1.78 g/L),
demonstrating a yield on lactose (0.432 mol/mol) much higher than previously reported yield for
test-tube production (0.143 mol/mol)73. Relieving the bottleneck identified by our biosynthetic
profiling approach therefore resulted in much more efficient conversion of feedstock into
product.

Biosynthetic profiling of the LNT pathway by combinatorial CRISPRa indicated both the
effects of lacY overexpression and the relative sensitivity of production to wbgO expression,
demonstrating the potential of this approach to rapidly optimize enzyme expression levels.
Crucially, the library is readily portable to different pathways. Applying combinatorial CRISPRa
to a different pathway only requires a new output plasmid with the pathway enzymes expressed
by the existing synthetic promoters, followed by cotransformation with the existing library of
scRNA program plasmids.

DISCUSSION
Synthetic biology and metabolic engineering offer a route for sustainable bioproduction of
chemicals from renewable feedstocks. Many of these products are metabolically complex,
requiring precise control over multi-gene networks to effectively redirect metabolic flux.
Combinatorial CRISPRa programs can provide precise control over multiple targets, but require
predictable scRNA efficacy. Developing general bacterial gRNA design rules and avoiding the
typical trial-and-error validation of gRNA functionality will be an important factor for advancing
multi-gene regulation programs. By combining computational RNA folding and experimental
analyses, we uncovered strong correlations (rs=0.7-0.8) between CRISPR-activated expression
and a set of thermodynamic and kinetic scRNA folding parameters74,75. Among the parameters
examined, kinetic parameters associated with post-transcriptional RNA folding have the largest
impacts on CRISPRa.

We found that a single kinetic parameter, Folding Barrier, can accurately predict bacterial
CRISPRa across a broad range of expression levels, with a failure rate near zero for forward
design of scRNAs. We speculate that the predictive value of Folding Barrier may be higher than
that of Folding Energy because binding to dCas9 may stabilize the active scRNA structure
(Supplementary Figures 2 and 3). The kinetic barrier to access the active structure determines
the likelihood of dCas9 trapping the RNA in that structure, and is potentially more important than
the intrinsic thermodynamic stability of the free RNA structure. dCas9 binding should also
provide some resistance to RNA degradation76. The high predictability of scRNA design
supplied by Folding Barrier should significantly facilitate the forward engineering of complex
bacterial CRISPRa/i systems. Multi-guide applications that have remained inefficient or
impractical with current gRNA failure rates, such as combinatorial expression screening77 or
model- and data-driven strain engineering and optimization18, can therefore be accelerated.
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Recent metabolic engineering successes in related systems emphasize the value of predictive
gRNA design22,78.

The Folding Barrier metric outperformed current state-of-the-art gRNA design tools in its
ability to predict CRISPRa activity21,30. There are many possible explanations for the inability of
existing models to apply to bacterial CRISPRa systems. First, many of these models account for
genome structure, which will vary greatly between eukaryotes and prokaryotes79,80. Second, in
regression models trained on large gene editing datasets, it is difficult to decouple gRNA
efficiency from feedback on gene expression as part of the overall gene regulatory network, and
therefore the predictions of these models may not be readily transferable between organisms.
Third, these models were trained on unmodified gRNAs and do not capture potential folding
effects of extended RNA elements included in scRNAs for bacterial CRISPRa. These models
could likely be improved by incorporating biophysical parameters in their predictions. Finally,
considerations of nucleic acid interactions in models tend to focus on the thermodynamics of
spacer-DNA interactions, and neglect other important aspects of gRNA folding29. Developing
models that combine solely sequence-based kinetic folding parameters with heuristics from
large-scale functional screening should further improve our ability to design modified guide
RNAs for bacterial CRISPRa.

Optimal multi-gene pathway expression could be influenced by many factors, possibly
including total burden, enzyme imbalance, or toxic enzyme or metabolite effects. The difficulty in
predicting these systems-level interactions means that finding global production optima often
requires exploring large design spaces81. Toward this end, we successfully developed a scRNA
library that can implement all combinations of four truncation-defined expression levels across
three chosen genes, totaling 64 possible expression programs. For each of the pathways we
examined, we found the optimal production to occur at non-maximal expression levels in at least
one channel of expression (rfp, sr, and lacY in Figures 4, 5, and 6, respectively). Production
from these pathways therefore maps ruggedly to the underlying design space of enzyme
expression, and systematically profiling these effects revealed high-producing strains and also
pathway bottlenecks potentially sensitive to optimization. Pursuing bottleneck optimization in the
LNT pathway with an improved enzyme variant pushed titers into g/L magnitude. Broadly
speaking, biosynthetic profiling using trans-acting scRNAs can greatly reduce the time needed
to tune multi-gene programs, compared to traditional cis-acting tools like promoter, RBS, or
ribozyme libraries82,83. We expect that the combinatorial scRNA library described here will
provide a straightforward approach to identifying production maxima and optimizing
burdensome pathways or toxic intermediate accumulation. In the future, this approach could be
extended to non-model hosts with metabolic and physiological capabilities suitable for
next-generation bioproduction applications84–86.

Combinatorial CRISPRa programs could also be extended to increase expression
variation resolution or use alternative tuning methods19,22,87. Along with principles of
high-dynamic-range CRISPRa promoter design43, the scRNA design rules from this work can in
principle generate a virtually unlimited supply of high dynamic range CRISPR-activatable
promoters. Expanding beyond the three synthetic promoters used here would allow activation of
larger pathways, endogenously-targeted CRISPRa/i16,88 for flux optimization, or dynamic gene
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regulation through biosensors89,90. There are practical limits on the sizes of functional
scRNA/gRNA arrays, due mostly to binding competition for a shared dCas9 pool41,42. New
principles of gRNA design, including those reported in this work, and some autoregulatory circuit
designs91 could be used to increase this limit and build large multi-guide programs. For large
combinatorial libraries of genetic circuits, higher-throughput screening methods like biosensing
technologies would be needed to screen through the added diversity18,92,93. For design spaces
too large for current screening methods, data-driven and model-guided approaches like ART
can be used to explore the full design space, informed by experimental efforts focused only on
the most likely subsets of design parameters (Supplementary Figure 15). An optimal subset size
depends on the complexity of the pathway to be optimized, but the experimental CRISPRa
profiling approach can ease the construction of these subsets.

Iterative cycles of model-guided optimization and data-driven model refinement present
a promising path forward for rapid generation and optimization of biosynthetic pathways. The
value of this approach is especially demonstrated when used together with combinatorial
CRISPRa/i programs to access model predictions and build iteratively improved strains.
Optimized metabolic engineering programs can help realize a circular bioeconomy that
decreases our reliance on fossil feedstocks for production of industrial chemicals and materials.
To help meet this challenge, synthetic biologists can use the tools presented in this work to
rapidly optimize strains for bioproduction of valuable chemicals from renewable feedstocks.
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METHODS

Bacterial Strains and Plasmid Construction
Bacterial strains used in this study are described in Supplementary Table 1. JM109 was a gift
from Joachim Messing (Addgene plasmid #49761)94. Plasmids were cloned using standard
molecular biology protocols and are described in Supplementary Table 2. Guide RNA target
sequences are provided in Supplementary Table 3. Orthogonal target sequences replacing J306
were 20 bp sequences selected at random from the human genome. Plasmids expressing the
CRISPRa components (dCas9, the activation domain MCP-SoxS, and one or more scRNAs)
were constructed using a p15A vector. S. pyogenes dCas9 (Sp-dCas9) was expressed using
the endogenous Sp.pCas9 promoter. The MCP-SoxS activation domain containing mutant SoxS
(R93A and/or S101A; see Supplementary Table 2)12 was expressed using the BBa_J23107
promoter (http://parts.igem.org). The scRNAs were expressed using either the BBa_J23119
promoter or the BBa_J23105 (Supplementary Figure 9), unless otherwise noted. scRNAs used
the b2 design, in which the endogenous tracr terminator hairpin upstream of MS2 is removed11.
Plasmids expressing target genes for CRISPRa were constructed using a low-copy pSC101**
vector. mRFP1, sfGFP, mTagBFP2, or metabolic pathway genes were expressed from the weak
BBa_J23117 minimal promoter preceded by synthetic DNA sequences containing the CRISPRa
target sites. Pathway gene RBSs were selected from a previously reported list95 and predicted
to have high strength96 in the new context.

Computational analysis of scRNA activity
Energetic parameters were generated using the RNAfold, RNAeval, RNAduplex, and Findpath
programs from the ViennaRNA Package version 2.3.527. Sequences of full scRNAs were input
to a custom script that returned the following parameters. Folding Barrier was calculated by
using Findpath to predict the barrier height for the direct refolding pathway from the MFE
structure to the active structure (see Supplementary Figure 2). The active structure is defined as
the structure in which the Cas9-binding handle is correctly folded and the spacer is
unstructured. Binding Energy was calculated by evaluating the RNA-RNA free energy of the
spacer sequence binding to its reverse-complement sequence using RNAduplex. The Folding
Energy, or free energy difference between the MFE structure and the active structure, was
evaluated using RNAfold with constraint folding. Folding Energy was then added to the Binding
Energy in order to estimate the net energetics of binding to a single-stranded target sequence.
This sum yields the Net Binding Energy, or the free energy difference between the MFE and the
bound state. All scRNA sequences were verified to have a prediction of correct folding of the
MS2 aptamer at the 3’ end, to avoid confounding cases of target occupancy without bound
MCP-SoxS.

For the purpose of comparison to this work’s scRNA efficacy predictions, the Doench
'16, Azimuth in vitro, and Moreno-Mateos tools for CRISPR guide design and evaluation were
implemented using the CRISPOR webserver (http://crispor.tefor.net/)97. The 20 bp variable
target sites for scRNA-directed CRISPRa flanked by 50 bp of upstream and 50 bp of
downstream sequence (120 bp total) were used as inputs (sequence is shown in the
Supplementary Methods). Analysis was carried out with the default settings for “No Genome”
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and Protospacer Adjacent Motif (PAM) set to “20bp-NGG - SpCas9, SpCas9-HF1, eSpCas9
1.1”. Each 20 bp target was evaluated using the “predicted guide efficiency” outputs generated
by the respective CRISPR guide design tools.

Construction of combinatorial scRNA library
To encode high, medium, and low activation of the J3, J5, and J6 promoters, we selected the
20, 14, and 11 nucleotide variants of J306; the 20, 18, and 14 nucleotide variants of J506; and
the 20, 18, and 17 nucleotide variants of J606, respectively. For all three promoters, a fourth,
unactivated condition was included via an off-target scRNA with a spacer sequence not
complementary to any of the synthetic promoters. In the CRISPRa component plasmid library, a
three-member array of scRNA expression, each with its own BBa_J23105 promoter and
terminator, was constructed for every possible combination of the J306, J506, and J606
truncation variants. Including the off-target versions, this resulted in a 64-member combinatorial
library of CRISPRa component plasmids, accounting for all combinations of high, medium, low,
and baseline expression of all three synthetic promoters.

Plate Reader Experiments
Single colonies from LB-agar plates were inoculated in triplicate in 500 μL EZ-RDM (Teknova)
supplemented with appropriate antibiotics and grown in 96-deep-well plates at 37°C and
shaking on a microplate orbital shaker (Heidolph) overnight. For mRFP1 detection, 150 μL of
the overnight culture were transferred into a flat, clear-bottomed black 96-well plate and the
OD600 and fluorescence (excitation wavelength: 540 nm; emission wavelength: 600 nm) were
measured in a Biotek Synergy HTX plate reader.

Flow Cytometry
Single colonies from LB-agar plates were inoculated in triplicate in 500 μL EZ-RDM (Teknova)
supplemented with appropriate antibiotics and grown in 96-deep-well plates at 37°C and
shaking on a microplate orbital shaker (Heidolph). Overnight cultures were diluted in 1:100 in
DPBS and analyzed on a MACSQuant VYB flow cytometer (Miltenyi Biotec) using a previously
described strategy to gate for single cells11. A side scatter threshold trigger (SSC-H) was applied
to enrich for single cells. A narrow gate along the diagonal line on the SSC-H vs SSC-A plot was
selected to exclude the events where multiple cells were grouped together. Within the selected
population, events that appeared on the edges of the FSC-A vs. SSC-A plot and the
fluorescence histogram were excluded. For sfGFP detection, the excitation wavelength was 488
nm and emission wavelength was 525 nm (50 nm bandpass). For mTagBFP2 detection, the
excitation wavelength was 405 nm and emission wavelength was 450 nm (50 nm bandpass).
For mRFP1 detection, the excitation wavelength was 561 nm and emission wavelength was 615
nm (20 nm bandpass). Data were analyzed using FlowJo. Median values were normalized to
the highest observed value within each channel and were baseline-subtracted using a strain
lacking the genes encoding the fluorescent proteins.

Biopterin production experiments
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Single colonies from LB-agar plates were inoculated in triplicate in 500 μL EZ-RDM (Teknova)
supplemented with appropriate antibiotics and grown overnight in 96-deep-well plates at 37°C
with shaking. 100 μL of the overnight culture were transferred into a flat, clear-bottomed black
96-well plate and the OD600 and fluorescence (excitation wavelength: 340 nm; emission
wavelength: 440 nm) were measured in a monochromator-equipped plate reader (Tecan Infinite
M1000) to assess pteridine production15,98–100. Fluorescence corresponds to BH4 and its
oxidized derivative BH2.

Lacto-N-tetraose production experiments
Single colonies from LB-agar plates were inoculated in singlicate in 2 mL EZ-RDM (Teknova)
with 10 g/L glucose, 2 g/L lactose and supplemented with appropriate antibiotics. For the JM109
strain, agar plates used 100 μg/mL chloramphenicol and 100 μg/mL carbenicillin to avoid slightly
chloramphenicol-resistant background growth, but liquid cultures used the more typical
concentrations of 25 μg/mL chloramphenicol and 100 μg/mL carbenicillin. Cultures were grown
in 14 mL polypropylene culture tubes at 37°C with shaking for 48 h. 500 μL of supernatant from
each culture were loaded onto 10 kDa microcentrifuge filters (Millipore) and spun for 20 min at
14000 rcf. 1 μL of filtered supernatants were assayed with a Shimadzu HPLC using UV-vis
detection at 210 nm. Lacto-N-tetraose (LNT) was separated using a Rezex ROA-Organic Acid
H+ column (Phenomenex) and a 20 mM H2SO4 isocratic mobile phase. A standard curve was
prepared by spiking known amounts of LNT or LNT II into supernatants derived from cultures of
JM109 E. coli transformed with empty vectors. Product LNT was observed at 10.6 minutes, and
intermediate LNT II, a triose, was observed at 11.4 minutes. LNT and LNT II peak areas were
normalized by the area of an endogenous peak observed at 9.1 minutes. Normalized peak
areas were baseline-subtracted using a control strain lacking the pathway genes. Cell pellets
also contained significant LNT, as previously reported52 and verified in pellets lysed by boiling,
but the difficulty of consistently quantifying lysis efficiency and the rich variation in supernatant
titers led us to consider mainly supernatant data for comparative analysis.

ART predictions and recommendations
The Automated Recommendation Tool (ART)71 was trained on the 64 experimental LNT strains,
with J3-lacY, J5-lgtA, and J6-wbgO CRISPRa variations as input variables and LNT production
as the response variable. ART is an ensemble model that linearly combines a variety of
machine learning models. Models are cross-validated individually on the data, and the weight
for each model represents its performance (higher for better-performing models, lower for
worse-performing ones). These weights are considered as random variables with probability
distributions obtained through Monte Carlo sampling. This approach enables quantification of
both the prediction mean and uncertainty for any given input data. Predictions are possible at
any point in the possible design space, not limited to the discrete high, medium, low, and
off-target activation levels comprising the experimental library. ART was trained, however, using
the exact activation levels from the experimental library, expressed as spacer length in
nucleotides (e.g. 20 for high, 14 for medium, and 11 for low in the J3 case). In all cases,
off-target spacers were expressed as an input of 0. Cross-validation correlations were also
computed using exact library activation levels.
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For the strain recommendations, strains are defined by their recommended input levels,
expressed in scRNA spacer length for that channel. ART was allowed to recommend any
spacer length from 0 to 21 nucleotides (non-integers allowed), with the constraint that new
designs had to be at least 1 nucleotide away (in at least one dimension) from other
recommendations and from training data. The 32 recommended strains resulting in the highest
predicted LNT concentration were obtained from ART. In this work, recommendations were fully
exploitative (𝛼 = 0), meaning that they prioritized maximizing LNT as opposed to minimizing the
uncertainty in LNT predictions.

Statistics
Statistical significance was calculated using two-tailed unpaired Welch’s t-tests. Quantitative
correlations are expressed as Pearson correlations. Rank-order correlations are expressed as
Spearman correlations. Hill function (Figure 2d) was fitted as the following nonlinear function in
GraphPad Prism, using least squares regression:

𝑦 =
𝐵

𝑚𝑎𝑥
 ∗ 𝑥ℎ

𝐾
𝑑

ℎ + 𝑥ℎ

Dose-response function (Supplementary Figure 8) was fitted as the following nonlinear function
in GraphPad Prism, using least squares regression:

𝑦 = 𝑦
𝑚𝑖𝑛

+ 𝑥 
(𝑦

𝑚𝑎𝑥
 − 𝑦

𝑚𝑖𝑛
)

𝐸𝐶
50

 + 𝑥

Simple linear and exponential fits (Supplementary Figures 1, 11, and 14) were performed using
default settings in GraphPad Prism or Microsoft Excel.
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FIGURES

Figure 1. Structure-based guide RNA design and synthetic promoters enable design
space mapping with tunable CRISPRa. Computational analysis of scRNA sequence identified
a kinetic parameter describing the rate of conversion between the most stable structure and the
active structure for CRISPRa, and scRNAs screened using this parameter predictably activated
bacterial expression from a set of synthetic promoters. Tuning the activation of these promoters
by truncating their scRNA spacer sequences—and again computationally verifying their
efficacy—allows combinations of activation level at each promoter. The promoters can be paired
with chosen output ORFs, including metabolic pathways. This method of controlling pathway
gene expression allows for profiling of pathway design spaces for metabolic engineering using a
combinatorial library of CRISPR-activated expression levels.
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Figure 2. CRISPRa is sensitive to scRNA target sequence. a Experimental system for
testing the role of scRNA target site sequence on CRISPRa activity. Orthogonal 20 bp target
sequences (Supplementary Table 3) were selected at random from the human genome. These
sequences replaced the J306 target sequence in the previously described J3 promoter12, and
the cognate scRNAs contained the complementary spacer sequences. No other part of the
promoter was altered. b CRISPR-activated RFP expression from each promoter variant. In the
presence of the cognate scRNA, sequence-dependent expression variation was measured
across the set. Blue bars (g1-J106) represent the Fluorescence/OD600 of strains harboring each
synthetic promoter and the cognate scRNA. The green bar represents the Fluorescence/OD600

of the J3 promoter with its cognate J306 scRNA. The grey bar (OT) represents the baseline
expression of the J3 promoter, obtained by expressing an off-target scRNA (J206). c Folding
Barrier (FB) was identified as a critical parameter determining CRISPR-activated expression.
Additional kinetic and thermodynamic parameters are described in Supplementary Figure 2 and
Supplementary Methods. Folding Barrier can be calculated as the height of the energy barrier
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separating the minimum free energy (MFE) secondary structure of a scRNA from the secondary
structure of that scRNA with the dCas9-binding handle, MS2 hairpin and spacer folded into the
active conformations. d Folding Barrier predicts the CRISPR-activated expression of synthetic
promoters based on the sequence of their cognate scRNA. In addition to the 15 promoters from
panel b, 24 new synthetic promoters were designed to test expression dependence on FB.
These target site sequences are paired with cognate scRNAs with FBs ranging from 4.7
kcal/mol to 32.7 kcal/mol (Supplementary Table 3). The y-axis values represent
Fluorescence/OD600 of strains harboring each promoter variant and expressing the cognate
scRNA, relative to the Fluorescence/OD600 of the J3 promoter and the J306 scRNA (green).
Blue and red dots respectively indicate the values of the strains expressing the J506 and J606
scRNAs targeting their cognate promoters (Figure 3). The blue line represents a Hill function fit
to the data, and the grey dotted lines represent the 95% confidence interval for the fit. R2

represents the coefficient of determination for the fit. Values in panels b and d represent the
average ± standard deviation calculated from n = 3 biologically independent samples. Source
data for b and d are provided as a Source Data file.
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Figure 3. CRISPR activation of orthogonal synthetic promoters can be tuned using
truncated scRNAs. a Orthogonal CRISPR activation was achieved for the J3, J5, and J6
synthetic promoters by the sequence orthogonality of their cognate scRNAs (J306, J506, J606,
respectively). While J3 was previously described12, J5 and J6 were selected from our set of 38
synthetic promoters (Figure 2d) because they generated similar CRISPR-activated expression
levels as J3. b Synthetic promoters for CRISPRa can be selectively activated by expressing
their cognate scRNAs. Bars represent the Fluorescence/OD600 of strains harboring the J3, J5, or
J6 promoters and expressing the cognate or non-cognate scRNAs. c CRISPR-activated
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expression from the J3, J5, and J6 promoters can be tuned with truncated scRNAs by removing
nucleotides from the 5’ end of the spacer. Bars represent the Fluorescence/OD600 of strains
harboring J3, J5, or J6 and expressing the cognate scRNAs truncated to 19, 18, 17, 14, and 11
bases. Grey bars represent the baseline expression of the promoters, obtained from strains
expressing an off-target scRNA (J206). Labels above bars indicate the spacer length chosen to
encode high, medium, low and off expression levels in the combinatorial scRNA library (Figure
4). Values in panels b and c represent the average ± standard deviation calculated from n = 3
biologically independent samples. Source data for b and d are provided as a Source Data file.
The full sequences of the J3, J5, and J6 promoters are described in Supplementary Methods.
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Figure 4. Multi-gene expression can be rapidly tuned using combinatorial CRISPRa
programs. a Combinatorial library encoding all combinations of four CRISPR-activated
expression levels across three genes. The library expresses three scRNAs (variants of J306,
J506, and J606). Each scRNA is present in the library in three truncation variants to generate
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high, medium and low levels of expression of their target promoters (J3, J5, and J6,
respectively). In addition to the three truncation variants, the library contains strains with an
off-target scRNA in place of each of the J306, J506, and J606 scRNAs to encode a condition in
which the target promoter remains unactivated. The lengths of the J306 scRNA variants are 20,
14, and 11 bases. The J506 scRNA variants are 20, 18, and 14 bases. The J606 scRNA
variants are 20, 18, and 17 bases. b Use of the combinatorial scRNA library to specify the
expression of multiple genes independently. Each member of the combinatorial scRNA library
was delivered to a strain harboring a plasmid expressing J3-gfp, J5-bfp, and J6-rfp reporters,
generating 64 strains expressing different combinations of the three fluorescent proteins. Bars
represent the flow cytometry median of GFP, BFP, and RFP from each strain, normalized to the
maximum level across the experiment. The heatmap table below the plot indicates the encoded
promoter expression for each strain, as described on the bottom right. Dashed lines represent
the Relative Fluorescence/OD600 of strains harboring only one of the three fluorescent reporters
and only the cognate scRNA (see Supplementary Table 2 for plasmids and Supplementary
Figure 10 for variation in single-channel expression), again normalized to the maximum value.
Bars in panel b represent the average ± standard deviation calculated from n = 3 biologically
independent samples. Source data are provided as a Source Data file. The sequence of each
scRNA in the combinatorial library can be found in Supplementary Table 3. The sequence of the
reporter plasmid expressing J3-gfp, J5-bfp, and J6-rfp is described in the Supplementary
Methods.
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Figure 5. Combinatorial CRISPRa programs can be applied to tune biosynthetic
pathways. a Tetrahydrobiopterin (BH4) production was tuned by delivering the combinatorial
scRNA library to an E. coli strain harboring a BH4 pathway plasmid. BH4 is synthesized from
GTP by expressing the gtpch gene from E. coli and the ptps and sr genes from M. alpina. BH4
then undergoes two oxidative decomposition steps yielding dihydrobiopterin (BH2, not shown)
and biopterin. The BH4 pathway plasmid was constructed by placing the gtpch, ptps and sr
genes under control of the J3, J5, and J6 promoters, respectively. b Tuning gene expression in
new biosynthetic pathways only requires constructing a new pathway plasmid. The new plasmid
is then cotransformed with the same scRNA library from Figure 4. c Combinatorial tuning of
BH4 pathway reveals that gtpch activity is limiting and that the sr gene is expressed in excess.
Bars represent the relative biopterin of each strain in the combinatorial library harboring the BH4
pathway plasmid. Relative biopterin is measured through OD600-normalized fluorescence
(excitation: 340 nm, emission: 440 nm), which corresponds to BH4 and its oxidized derivative
BH2. Values are relative to the strain with the highest Fluorescence/OD600 within the set. The
x-axis heatmap is color coded to indicate the encoded promoter expression for each strain, as
described on the bottom right. Values in panel c represent the average ± standard deviation
calculated from n = 3 biologically independent samples. Source data are provided as a Source
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Data file. The sequence of the pathway plasmid containing J3-gtpch, J5-ptps and J6-sr is
described in the Supplementary Methods.
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Figure 6. Combinatorial CRISPRa library applied to an HMO biosynthesis pathway
identifies high-producing strains and pathway bottlenecks. a The LNT pathway consists of
lacY overexpression from the J3 promoter, lgtA from the J5 promoter, and wbgO from the J6
promoter, activated by the J306, J506, and J606 scRNAs, respectively. The pathway enzymes
import and elongate the lactose feedstock into a triose (LNT II) and then a tetraose (LNT). The
pathway is expressed in an E. coli host with a lacZ knockout (JM109). The substrates
UDP-GlcNAc and UDP-Gal are derived from endogenous metabolism. b HPLC analysis of
supernatant from cultured library members indicates LNT production levels from the scRNA
library. The highest producing strain (#17, black arrow) was used in the galactosyltransferase
comparison in d. The x-axis heatmap is color coded to indicate the encoded promoter
expression for each strain, as described on the bottom right. The 65th strain (right) is a
no-pathway control culture carrying an empty vector. For comparison, LNT II levels are shown in
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Figure S6. c Dependence of LNT (left panel) and LNT II (right panel) production on lgtA and
wbgO activation highlights sensitivity to wbgO activation and accumulation of LNT II. Only
medium-lacY strains are shown here, due to their rich variance across the subset (box plot in b).
The highest producing strain (#17) is again highlighted with a black arrow. d Computational
strain recommendations from the Automated Recommendation Tool (ART) and their predicted
LNT titers. Directed to try to maximize LNT production, ART generated 32 strain
recommendations, defined by their scRNA truncation levels (spacer lengths measured in
nucleotides, though non-integer values are allowed here), which determine degree of CRISPR
activation (lower right). The top 20 strains, ordered by predicted LNT titer, are highlighted in
color on each subgraph, while the bottom 12 are shown in grey. The same 32 strains are shown
on each subgraph. Spacer lengths defined as high, medium, and low expression in the
experimental scRNA library are indicated as vertical lines for each channel. Recommendation
bounds were constrained between 0 and 21 nucleotides. ART-recommended strains tend to
favor medium LacY expression, a wide range of LgtA levels, and only high WbgO expression.
Error bars in d indicate the 95% credible interval of the predictive posterior distribution. See
Supplementary Figure 13 for correlation of predicted versus observed LNT production. See
Supplementary Figure 14 for how recommendations are combined within each strain. e A more
active β-1,3-galactosyltransferase enzyme from C. violaceum72 resolves accumulation of LNT II.
The lower-activity WbgO enzyme, even at high CRISPR activation, results in significant
accumulation of LNT II, scaling with initial feedstock concentration (left panel). The additional
activity of CvGalT relieves the intermediate accumulation and results in higher LNT titers (right
panel). The horizontal line indicates LNT titer achieved with WbgO and 2 g/L initial lactose,
showing that CvGalT can achieve similar titer using only 0.05–0.2 g/L initial lactose. Bar values
in e represent the average ± standard deviation calculated from n = 3 biologically independent
samples. Source data for b, c, d, and e are provided as a Source Data file. The sequence of the
pathway plasmid containing J3-lacY, J5-lgtA and J6-wbgO or J6-CvGalT is described in the
Supplementary Methods.
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